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Abstract—Automated polyp detection in colonoscopy
videos has been demonstrated to be a promising way
for colorectal cancer prevention and diagnosis. Traditional
manual screening is time consuming, operator dependent,
and error prone; hence, automated detection approach is
highly demanded in clinical practice. However, automated
polyp detection is very challenging due to high intraclass
variations in polyp size, color, shape, and texture, and
low interclass variations between polyps and hard mim-
ics. In this paper, we propose a novel offline and online
three-dimensional (3-D) deep learning integration frame-
work by leveraging the 3-D fully convolutional network (3D-
FCN) to tackle this challenging problem. Compared with
the previous methods employing hand-crafted features or
2-D convolutional neural network, the 3D-FCN is capable
of learning more representative spatio-temporal features
from colonoscopy videos, and hence has more powerful
discrimination capability. More importantly, we propose a
novel online learning scheme to deal with the problem of
limited training data by harnessing the specific information
of an input video in the learning process. We integrate of-
fline and online learning to effectively reduce the number of
false positives generated by the offline network and further
improve the detection performance. Extensive experiments
on the dataset of MICCAI 2015 Challenge on Polyp Detection
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demonstrated the better performance of our method when
compared with other competitors.

Index Terms—Automated polyp detection, colonoscopy
video, computer-aided diagnosis, convolutional neural net-
works (CNNs), deep learning.

I. INTRODUCTION

COLORECTAL cancer (CRC) is the second leading cause
of cancer death in the USA and is estimated to have caused

49 190 deaths in 2016 according to American Cancer Soci-
ety [1]. Since adenomatous polyps (adenocarcinomas) are most
likely to develop into CRC, early and accurate detection of
polyps from optical colonoscopy (OC) videos is of great signif-
icance for prevention and timely treatment of CRC. However,
manual screening is not only laborious and time-consuming, but
also heavily relies on clinical experience. It easily suffers from
misdetection, which has been reported to be as high as 25% [2].
Missed polyps can lead to the late diagnosis of colon cancer with
a low survival rate [3]. Hence, automated detection methods are
highly desirable in clinical practice. However, automated detec-
tion of polyps from colonoscopy videos is very challenging due
to high intraclass variations in polyp size, color, shape, texture,
and location as well as the low interclass variations between
polyps and hard mimics (e.g., colon walls, specular spots, and
air bubbles). Fig. 1 shows the several examples of polyps and
their mimics from colonoscopy videos.

A. Related Work

Over the past few years, considerable efforts have been dedi-
cated to developing efficient and robust approaches to automated
polyp detection from colonoscopy videos. Most of these works
detected polyps from general OC images, whereas there were
also some works detecting polyps from narrow-band imaging
(NBI) colonoscopy data [4].

Some previous studies utilized polyps’ color and texture in-
formation to design hand-crafted descriptors [5]–[8]. For exam-
ple, Karkanis et al. [5] employed color wavelet texture features
as descriptors and combined sliding window strategy to de-
tect polyps in colonoscopy images. Later, researchers proposed
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Fig. 1. Illustration of variations of polyps (green and red circles rep-
resent polyps and hard mimics). From the top to the bottom rows: the
large color variation of the same polyp; the large size variation of the
same polyp; the large shape variation among different polyps, and low
interclass variation between polyps and hard mimics, respectively.

to utilize shape, intensity, edge, and spatio-temporal features
for automated polyp detection. For examples, Hwang et al. [9]
adopted elliptical shape features to detect the presence of polyps;
Bernal et al. [10], [11] presented a polyp region descriptor based
on the depth of a valleys image and developed a region growing
approach to locate polyps in colonoscopy images; Wang
et al. [12], [13] utilized edge cross-sectional profiles for au-
tomated detection of protruding polyps; Ganz et al. [4] pro-
posed an automated method to detect polyps in NBI colonoscopy
data based on shape of polyps; and Park et al. [14] employed
the spatio-temporal features with the conditional random field
model for automated polyp detection. Some methods combin-
ing two or more features have also been proposed to improve
the detection performance [15], [16]. Tajbakhsh et al. [16] in-
tegrated the global geometric constraints and local intensity
variation patterns to detect polyps. Although considerable ad-
vancements have been achieved, these methods still suffer from
a low detection accuracy. The main reason is that the represen-
tation capability of hand-crafted features is quite limited to deal
with the high intraclass variations of polyps and low interclass
variations between polyps and hard mimics.

Recently, deep convolutional neural networks (CNNs) with
hierarchical feature learning capability trained on a large
amount of training dataset have demonstrated state-of-the-art
performance in many medical image analysis tasks, including
classification [17]–[19], object detection [20]–[23], and
segmentation [24]–[29]. As for automated polyp detection,
some researchers also attempted to employ CNNs to handle
this challenging task. For example, Tajbakhsh et al. [30]
proposed a two-dimensional (2-D) CNN method for polyp
detection by taking the candidates selected by low-level
hand-crafted features as input and utilizing an ensemble of
2D-CNNs to learn color, shape, and temporal features of

polyps. However, this method learned spatial and temporal
features with different networks, which may somehow limit its
discrimination capability. In this case, the rich spatio-temporal
features of colonoscopy videos were not fully explored and
harnessed.

While deep CNNs have achieved remarkable gains in medi-
cal image analysis tasks, most works focus on harnessing 2D-
CNN to solve 2-D image analysis problems. Recently, some
researchers have proposed to employ 3D-CNN to deal with de-
tection and segmentation tasks in volumetric medical data [31]–
[34]. These works demonstrated that 3D-CNN can achieve better
performance than 2D-CNN and its variants when processing 3-D
medical data, as it can generate more discriminative features by
taking full advantages of 3-D spatial information. These works
motivate us to explore the feasibility of 3D-CNN in endoscopic
video processing, where we think it has great potential to gener-
ate representative spatio-temporal features for better outcomes.
Actually, 3D-CNN has been proposed to recognize human ac-
tions from natural videos [35], [36], but we still face challenges
to leverage it in medical video processing. One of the main
concerns is that, compared to the large amount of training data
for natural video processing tasks, the training data for medical
applications are usually quite limited.

B. Our Contributions

In this paper, we propose an effective 3-D fully convolu-
tional network (3D-FCN) incorporated with a novel online and
offline integration strategy for automated detection of polyps
from colonoscopy videos. Different from the work reported
in [30], our method learns spatio-temporal features simulta-
neously within a 3D-CNN framework to tackle the high intra-
class and low interclass variations of polyps. Besides, we fur-
ther accelerate the detection progress by converting 3D-CNN
into 3D-FCN without resorting to traditional time-consuming
region proposal methods (e.g., sliding windows). More impor-
tantly, we propose a novel online learning scheme to deal with
the problem of limited training data by integrating the specific
information of an input video. By adaptively tuning the online
network according to the specific testing video, this scheme can
significantly reduce the number of polyp-like false positives
(FPs). We evaluated our method on an open challenge dataset
of MICCAI 2015 Challenge on Polyp Detection. Experimental
results demonstrated that our method can achieve better perfor-
mance than other competitors.

Our main contributions can be summarized as follows.
1) We propose an effective 3D-FCN to learn spatio-

temporal feature representations for polyp detection from
colonoscopy videos. Compared with the previous meth-
ods based on hand-crafted features and 2D-CNNs, our
method can more effectively tackle the large intraclass
and low interclass variations of polyps.

2) We propose a novel integrated framework with online and
offline 3-D representation learning to reduce the number
of FPs and further improve the discrimination capability
of our method for a specific video. This fusion learning
strategy can remedy the deficiency of traditional CNNs
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Fig. 2. Flowchart of the proposed online and offline 3-D deep learning framework for automated polyp detection.

in specificity caused by limited training data and improve
their ability to handle cases with large variations.

3) Our method achieved the highest F1 and F2 score on the
open challenge dataset of MICCAI 2015 Challenge on
Polyp Detection.

The remainder of this paper is organized as follows. In
Section II, we introduce the proposed 3D-FCN and the online
learning scheme in detail. The experimental results are reported
in Section III. We discussed some important issues relevant to
this paper in Section IV and conclusions are drawn in Section V.

II. METHOD

Fig. 2 shows the flowchart of the proposed framework,
which integrates offline and online 3-D representation learning
by leveraging the 3D-FCN. An offline 3D-FCN (referred as
offline-3D-Net) is first developed and exploited for learning
spatio-temporal features from the training samples extracted
from colonoscopy videos. Then, we incorporate an online-3D-
Net, which is incrementally updated in the detection process
for each input video, to effectively remove FPs generated by
the offline-3D-Net. Finally, we fuse the outputs of these two
networks to obtain the detection results.

A. 3-D Fully Convolutional Networks

1) 3-D Convolutional Neural Networks: While previ-
ous works on polyp detection pay more attention to the spa-
tial features of polyps, we think the temporal information in
colonoscopy videos also provides important clues for auto-
mated detection methods. Considering 3D-CNN can better en-
code spatio-temporal information in videos [36], we explore
3D-CNN to learn spatio-temporal features from colonoscopy
videos for automated polyp detection. To the best of our knowl-
edge, we are the first to employ 3D-CNN for endoscopic video
analysis.

Typically, a 3D-CNN consists of 3-D convolutional layers,
3-D pooling layers, fully-connected layers, and softmax layers.
The 3-D convolution and 3-D pooling operations are performed
in spatial and temporal dimensions. In addition, the outputs of
3-D convolution and pooling are 3-D feature volumes when the

input is a video clip. In contrast, the outputs of 2-D convolu-
tion and pooling are 2-D feature maps even though the input is
a video clip (taking multiple frames as multichannels). To the
end, 2D-CNN severely disregards the temporal information of
colonoscopy videos through these 2-D convolution and pool-
ing operations. On the other hand, 3D-CNN can sufficiently
preserve the temporal information of colonoscopy videos when
extracting hierarchical features, hence it can effectively dis-
tinguish polyps from hard mimics such as specular spots and
air bubbles [30] by taking full advantage of spatio-temporal
information.

2) 3-D FCNs for Detection: By leveraging the represen-
tative spatio-temporal features learned from 3D-CNN, we can
locate polyps from colonoscopy videos with sliding windows
scheme through feeding cropped video subvolumes into the
3D-CNN. However, this scheme is quite computationally ex-
pensive as thousands of candidate samples will be generated due
to the high resolution and large frame number of colonoscopy
videos. In addition, the polyps are sparsely distributed in the
whole videos (most frames have only one or no polyps), making
this traditional scheme inefficient and not applicable in clinical
practice.

In this regard, we convert 3D-CNN to 3D-FCN for fast de-
tection by borrowing the fully convolutional concept in [37].
By converting the fully connected layers in the 3D-CNN into
convolutional layers, we obtain a 3D-FCN, which can take
arbitrary-sized video clips as input and output corresponding
probability maps. Compared with the sliding window scheme,
which repeatedly crops overlapping samples, our 3D-FCN can
produce a probability map within one single forward process.
Each value in this probability map can be regarded as the
network output of one subwindow (with same size of recep-
tive field of 3D-FCN) in the original input video clips. Fig. 3
illustrates this process. Therefore, the 3D-FCN is inherently an
accelerated variant of the traditional sliding window scheme.
Note that due to the limitation of GPU memory, we input video
clips with a specific length (16 frames in our experiments) in-
stead of the whole video to the proposed 3D-FCN, and get one
probability map within one single forward propagation. Our
method is quite different from the traditional sliding window
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Fig. 3. Illustration of 3D-FCN, which can generate the classification
results of subwindows within one single forward propagation. Different
boxes represent different subwindows (overlapping cropped samples)
and the size of the windows is the size of receptive field of 3D-FCN.
Note that the size of probability map is smaller than that of the test video
clip.

method. In a sliding window approach, we need to repeatedly
crop overlapping subvolumes from one video clip and feed them
to 3D-CNN to get the complete probability map of this video
clip. While for our 3D-FCN, we only need to feed the whole
video clip into the 3D-FCN and get the probability map of the
whole video clip within a forward propagation directly. To the
end, our method can reduce the redundant computations and
accelerate detection compared to the traditional sliding window
approach.

Due to the existence of down-sampling operations within
the 3D-FCN, the dimensions of probability maps are reduced
compared to the original input size and we need to determine
the corresponding window location for each probability value.
Supposing the spatial receptive field (the region in the original
input video clip that influences the output probability value [38])
of the 3D-FCN is rw × rh , the spatial down-sampling stride is
sw × sh (the cumulative product of strides in convolutional and
pooling layers; it is also the stride of subwindows) and the spatial
dimensions of input video clips are w × h, the sizes of output
probability maps (wp × hp ) can be calculated as

wp =
⌈

w − rw

sw

⌉
+ 1

hp =
⌈

h − rh

sh

⌉
+ 1. (1)

We inverse the above equations to get the following index map-
ping equations:

x =
⌈rw

2

⌉
+ sw ∗ (xp − 1)

y =
⌈rh

2

⌉
+ sh ∗ (yp − 1) (2)

where (xp , yp ) and (x, y) represent the probability map index
and the center location of the corresponding subwindow, respec-
tively.

In order to detect polyps in the frame It (the tth frame of
a colonoscopy video), we first extract the neighboring frames
centered at It to form a video clip with 16 frames and then
feed the video clip into the proposed 3D-FCN to acquire a
probability map. Finally, we figure out the polyp locations by
mapping the positions with probabilities above a threshold (0.8
in our experiments) in the probability map back to the input
space according to (2).

TABLE I
ARCHITECTURE OF THE PROPOSED OFFLINE 3D-FCN (ARCH I)

Layer Feature maps Kernel size Stride

Input 102 × 102 × 16 × 3 – –
Conv1a 100 × 100 × 14 × 64 3 × 3 × 3 1 × 1 × 1
Pool1 50 × 50 × 14 × 64 2 × 2 × 1 2 × 2 × 1
Conv2a 48 × 48 × 12 × 128 3 × 3 × 3 1 × 1 × 1
Pool2 24 × 24 × 12 × 128 2 × 2 × 1 2 × 2 × 1
Conv3a 22 × 22 × 10 × 256 3 × 3 × 3 1 × 1 × 1
Conv3b 20 × 20 × 8 × 256 3 × 3 × 3 1 × 1 × 1
Pool3 10 × 10 × 8 × 256 2 × 2 × 1 2 × 2 × 1
Conv4a 8 × 8 × 6 × 512 3 × 3 × 3 1 × 1 × 1
Conv4b 6 × 6 × 4 × 512 3 × 3 × 3 1 × 1 × 1
Pool4 3 × 3 × 2 × 512 2 × 2 × 2 2 × 2 × 2
Conv5 1 × 1 × 1 × 1024 3 × 3 × 2 1 × 1 × 1
Conv6 1 × 1 × 1 × 2 1 × 1 × 1 1 × 1 × 1

Note: Conv5 and Conv6 are converted from fully connected
layers.

B. Offline Representation Learning

1) Architecture of Offline 3D-FCN: The architecture of
our proposed 3D-FCN used in offline representation learning is
illustrated in Table I. Note that we here use a video clip with size
of 102 × 102 × 16 × 3 (width × height × length × channel)
as an illustration, but the 3D-FCN can take arbitrary-sized video
clips as input. Previous studies [39], [40] have shown that small
convolution kernels are more effective compared to the counter-
part of large kernels with more discrimination capability while
less computation parameters. For example, a stack of three
3 × 3 × 3 convolutional kernels has an effective receptive field
of 7 × 7 × 7 but the stacked layers incorporate three nonlinear
rectification layers instead of a single one, which makes the de-
cision function more discriminative [39]; assuming that both the
input and output of the three-layer 3 × 3 × 3 convolution stack
have C channels, the three-layer stack has 3 × (33C2) = 81C2

weights while the single 7 × 7 × 7 convolution kernel requires
73C2 = 343C2 parameters. Hence, stacked small kernels have
less parameters and are more computationally efficient. We
introduce this finding in our implementation of 3-D convolu-
tional networks by using small convolution kernels with size of
3 × 3 × 3 (spatial width × spatial height × temporal depth) in
convolutional layers.

Overall, our network consists of six conventional convolu-
tional layers (Conv) with size of 3 × 3 × 3 and each of them is
followed by a rectified linear unit (ReLU) [41] as an activation
function. We also add four max-pooling layers (Pool) between
these convolutional layers to increase the receptive field and
reduce the feature volume size. After each pooling layer, we
double the number of feature volumes to preserve the neces-
sary information. There are two converted convolutional layers
(Conv5 and Conv6) followed by layer Pool4. These two con-
volutional layers are converted from fully connected layers and
can allow our network to take arbitrary-sized input.

2) Offline Model Training: We train the offline 3D-FCN
(offline-3D-Net) using the cropped subvolumes. As the ground
truth of training colonoscopy videos are pixel-level annotated
polyp masks, we use the following strategy to construct offline
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training samples. Given a polyp mask, we first calculate the
centroid of this mask as the polyp location. Then, a positive
training subvolume with size of 102 ×102 × 16× 3 (the 3D-
FCN will output one probability value) is cropped centered at the
calculated polyp location, and the negative training subvolumes
are randomly cropped in the colonoscopy videos with no overlap
with the positive training subvolumes.

Training a deep CNN from scratch, i.e., the weights of net-
works are randomly initialized, is difficult because this manner
requires a large amount of training samples. In addition, we need
more data when training 3-D networks because 3-D networks
have more parameters than 2-D networks. However, the insuf-
ficiency of training data is a well-known problem of harnessing
deep learning techniques in medical image computing. For ex-
ample, there are only ten videos containing polyps in our train-
ing data (see Section III-A for more detail). The limited training
dataset would easily lead to overfitting problem when training
deep networks. In order to partly tackle the insufficiency of train-
ing data, we use the transfer learning technique [20] following
previous works [18], [20], [21]. Specifically, we employ a pre-
trained network [36] (trained on a large-scale video data Sport-
1M [42], which contains 1.1 million sports videos) to initialize
the weights of our 3D-FCN. Next, we fine-tune our network with
the backpropagation method using the training subvolumes.

C. Online Representation Learning and Model Fusion

By harnessing the spatio-temporal feature representations
from colonoscopy videos, the offline-3D-Net can achieve good
performance on polyp detection. However, due to the large vari-
ations across different videos, the offline-3D-Net trained in lim-
ited video clips may still output some polyp-like FPs. In our
experiments, we observe that these polyp-like FPs are video
specific; the FPs in the same video are similar but the FPs in
different videos are different. In this case, if the network can
learn to discriminate specific FPs from each video, it can ef-
ficiently improve the precision performance. Based on above
observation and consideration, we propose an online represen-
tation learning scheme to further improve the detection perfor-
mance. More specifically, we train a specific online network
(referred as online-3D-Net) for each testing video with online
extracted samples from this video. This scheme can compen-
sate the offline-3D-Net’s inadequacy in discrimination capability
caused by the gap between the large variations of polyps across
different videos and the limited training dataset. Through online
representation learning regarding a specific video, the online-
3D-Net can leverage the specific information derived from this
video and thus reduce the number of FPs.

1) Online Sample Selection: The key step of online rep-
resentation learning is the selection of training samples, which
should be representative for training online-3D-Net to enhance
its capability of distinguishing polyps from hard mimics. We
extract the online samples according to the results obtained
from the offline network. When extracting the online training
samples centered at It , we first generate three probability maps
P t−1

ij , P t
ij , and P t+1

ij using offline-3D-Net and the video clips
centered at frame It−1 , It , and It+1 . Then, we compare the

Fig. 4. Examples of extracted online training samples. The blue and
red crosses represent positive and negative samples, respectively.

three probability maps with a probability threshold Po and ob-
tain the positive (∀τ ∈ {t − 1, t, t + 1}, P τ

ij > Po ) and nega-
tive (∃τ ∈ {t − 1, t, t + 1}, Po − 0.2 < Pτ

ij ≤ Po ) probability
indexes (i, j). Next, the positive and negative positions corre-
sponding to positive and negative indexes are localized based
on (2). Finally, we extract the positive training samples from the
localized positive positions, whereas the negative samples con-
sist of two parts: the samples selected from the localized negative
positions and the samples drawn randomly without overlapping
with the extracted positive samples. As the first part of negative
samples has relative high probability values, adding these hard
negative samples can enhance online model’s capability of dis-
tinguishing polyps from polyp-like FPs. We employ the above
strategy to extract online training samples from each frame of
this video. The parameter Po can be used to adjust the number of
positive and negative training samples and we set it through cross
validation using the ten colonoscopy videos containing polyps
in our experiments. We show some extracted training samples
for training the online-3D-Net in Fig. 4. It is observed that our
online selection strategy can effectively extract polyp-like FPs
as negative samples and hence can improve the capability of the
online model to combat the hard mimics of polyps.

2) Online Model Learning: The online model is also im-
plemented based on 3D-FCN and adopts the same architecture
as the offline network. Considering the limited online training
samples, we train the online network based on the offline net-
work instead of training it from scratch. We use the weights of
offline-3D-Net to initialize each online-3D-Net’s weights and
update its weights with backpropagation using online training
samples extracted from this video. The online update is per-
formed incrementally and in 60 frames interval using training
samples extracted from previous frames. Note that only the last
three convolutional layers of the online network are updated,
whereas the weights of previous convolutional layers are fixed
throughout online model updating. This scheme is not only
computationally efficient, but can avoid overfitting by fixing
the video-independent spatio-temporal features extracted from
previous convolutional layers.

3) Model Fusion: As we mentioned above, the main pur-
pose of online network is to remove the specific polyp-like
FPs detected by offline network and further improve the de-
tection performance. To do this, we combine the outputs of
offline network and online network to get final polyp detec-
tion results. Note that in online sample selection process, the
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probability maps generated by offline-3D-Net may not be cor-
rect if the training samples are contaminated by noise examples
(though not common as observed from our experiments). In or-
der to make our model more robust, we set a threshold Ts to
bound the influence from online-3D-Net and calculate the final
probability Pij as

Pij =

⎧⎪⎨
⎪⎩

P off
ij + P on

ij

2
|P on

ij − P off
ij | ≤ Ts

P off
ij |P on

ij − P off
ij | > Ts

(3)

where P off
ij and P on

ij (i and j are the indexes of the probabil-
ity maps) are the predicted probabilities of offline-3D-Net and
online-3D-Net, respectively. If the absolute difference between
these two outputs is greater than Ts , the online output is dis-
carded and we only use the offline network result; otherwise,
we use the average result as the final prediction. Ts is set as
0.3 in our experiments through cross validation using the ten
colonoscopy videos containing polyps.

4) Complete Detection Flow of Our Method: We first
train an offline-3D-Net using all the training subvolumes and
initialize an online-3D-FCN with the same weights of offline-
3D-FCN for each testing video. Next, we process the testing
videos frame-by-frame by generating probability maps for each
frame. When processing frame It , we extract a video clip with
16 frames (from It−7 to It+8) and feed this video clips to offline-
3D-Net and online-3D-Net to generate the offline and online
probability maps. We fuse these two probability maps using (3)
and generate the polyp locations using the steps described in
Section II-A2. At the same time, we extract the online training
samples and update the online-3D-FCN using the strategies in
Sections II-C1 and II-C2.

D. System Implementation

The proposed framework was implemented with C++ and
MATLAB under the open source deep learning library of Caffe
[43] using a standard PC with a 2.60 GHz Intel(R) Xeon(R)
E5-2650 CPU and a NVIDIA GeForce GTX TITAN X GPU.
The offline network was trained with standard backpropagation
using stochastic gradient descend method (batch size=16,
momentum=0.9, weight decay=0.005, and the learning rate
was set as 0.0005 initially and decreased by a factor of 10
every 4000 iterations). We updated the online network for 50
iterations with the same batch size, momentum, and weight
decay with the offline network, but set the learning rate for the
last three convolutional layers as 0.001 for fast learning the
specific information from testing videos. The parameter Po in
online sample selection was set as 0.8. Generally, it took 0.25 s
to process one frame only using offline model; it took 1.23 s
to process one frame using fusion model and about half of the
time was spent in online network updating procedure.

III. EXPERIMENTS AND RESULTS

A. Dataset and Preprocessing

We evaluated our method on the ASU–Mayo Clinic Polyp
Database [16] of MICCAI 2015 Challenge on Polyp Detection.1

1https://grand-challenge.org/site/polyp/

The dataset consists of videos with various frames and the videos
are selected to display maximum variations in colonoscopy pro-
cedures (e.g., polyp variations, different resolutions, different
detection strategies, and existence of instruments information).
The training dataset contains 20 colonoscopy videos with pixel-
level annotated polyp masks in each frame. Among them, ten
videos have polyps inside and the other ten videos have no polyp.
There are totally 3799 frames with polyps. For the videos with
polyps, each video contains a unique polyp, but this unique
polyp disappears in most of frames and shows the maximum
variations in different size, location, view, and light. The testing
dataset contains 18 videos with ground truth held out by the
challenge organizers for independent evaluation.

Due to the different resolutions of colonoscopy videos, we
first resized all videos into fixed dimensions with spatial size
of 570 × 320 before processing. We did not use padding in the
3D-FCN and the size of generated probability map was 31 × 15.
Because probability values in the boundary of generated proba-
bility maps indicated the probabilities of the polyps in the corner
of original colonoscopys, we did not do special processing of the
pixels at the frame boundaries although a polyp may be located
at the corner. To increase robustness and reduce overfitting, we
utilized the strategy of data augmentation to enlarge the train-
ing dataset when training offline network. The augmentation
operations, including rotation (rotating 90◦, 180◦, and 270◦ in
the spatial plane) and translation (shifting the polyp locations
by uniformly sampling values: Δs ∼(−10, 10) in the spatial
plane and Δt ∼(−3, 3) in the temporal plane), were performed
on extracted training subvolumes. After data augmentation, we
obtained about 85 000 positive training samples and we also
extracted the same number of negative training samples to train
the offline-3D-Net.

B. Evaluation Metrics

We employed Precision (P) and Recall (R) to quantita-
tively evaluate the performance of our proposed polyp detec-
tion method. As low precision with high recall leads to heavy
burdens for clinicians and low recall with high precision may
result in late diagnosis of colon cancer, we also employed F1
score and F2 score to balance these two metrics. The above four
metrics are defined as

F1 =
2PR

P + R
,F2 =

5PR

4P + R

P =
Ntp

Ntp + Nfp
, R =

Ntp

Ntp + Nfn
(4)

where Ntp, Nfp, and Nfn denote the number of true positives
(TP), FPs, and false negatives (FN), respectively. Note that all
the metrics are defined on polyp level. A provided polyp de-
tection is considered as a TP if it falls inside the polyp masks;
otherwise it is regarded as an FP. An FN is a polyp that has not
been detected by the automated method.

C. Analysis of 3D-FCN

We investigated several different architectures of 3D-FCN to
empirically identify a good architecture. Besides the proposed
architecture above (Arch I in Table I), we also trained 3D-
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TABLE II
ARCHITECTURE OF DIFFERENT 3D-FCN (ARCH II)

Layer Feature maps Kernel size Stride

Input 102 × 102 × 16 × 3 – –
Conv1a 100 × 100 × 14 × 64 3 × 3 × 3 1 × 1 × 1
Pool1 50 × 50 × 14 × 64 2 × 2 × 1 2 × 2 × 1
Conv2a 48 × 48 × 12 × 128 3 × 3 × 3 1 × 1 × 1
Pool2 24 × 24 × 12 × 128 2 × 2 × 1 2 × 2 × 1
Conv3a 20 × 20 × 8 × 256 5 × 5 × 5 1 × 1 × 1
Pool3 10 × 10 × 8 × 256 2 × 2 × 1 2 × 2 × 1
Conv4a 6 × 6 × 4 × 512 5 × 5 × 5 1 × 1 × 1
Pool4 3 × 3 × 2 × 512 2 × 2 × 2 2 × 2 × 2
Conv5 1 × 1 × 1 × 1024 3 × 3 × 2 1 × 1 × 1
Conv6 1 × 1 × 1 × 2 1 × 1 × 1 1 × 1 × 1

TABLE III
ARCHITECTURE OF DIFFERENT 3D-FCN (ARCH III)

Layer Feature maps Kernel size Stride

Input 92 × 92 × 16 × 3 – –
Conv1a 88 × 88 × 14 × 64 5 × 5 × 3 1 × 1 × 1
Pool1 44 × 44 × 14 × 64 2 × 2 × 1 2 × 2 × 1
Conv2a 40 × 40 × 12 × 128 5 × 5 × 3 1 × 1 × 1
Pool2 20 × 20 × 12 × 128 2 × 2 × 1 2 × 2 × 1
Conv3a 16 × 16 × 8 × 256 5 × 5 × 5 1 × 1 × 1
Pool3 8 × 8 × 8 × 256 2 × 2 × 1 2 × 2 × 1
Conv4a 4 × 4 × 4 × 512 5 × 5 × 5 1 × 1 × 1
Pool4 2 × 2 × 2 × 512 2 × 2 × 2 2 × 2 × 2
Conv5 1 × 1 × 1 × 1024 2 × 2 × 2 1 × 1 × 1
Conv6 1 × 1 × 1 × 2 1 × 1 × 1 1 × 1 × 1

TABLE IV
DETECTION PERFORMANCE OF OFFLINE MODEL

WITH DIFFERENT ARCHITECTURES

Method TP FP FN Prec [%] Rec [%] F1 [%] F2 [%]

Arch I 2289 1972 2024 53.7 53.0 53.4 53.2
Arch II 2203 3433 2110 39.1 51.1 44.3 48.1
Arch III 2005 1999 2308 50.1 46.5 48.2 47.1

FCN with large convolution kernels and different receptive fields
(Arch II in Table II and Arch III in Table III). The Archs II
and III both employed large convolutional kernels with size
of 5 × 5 × 5 and Arch III had a different receptive field of
92 × 92 × 16 × 3. Table IV shows the detection performance
of offline model with different architectures. Note that all of
these networks were trained from scratch for fair comparison.
We can observe that the Arch I has better performance than
Archs II and III, which demonstrates that smaller convolution
kernels are more efficient than larger convolution kernels.

D. Analysis of Offline and Online Learning

Fig. 5 shows some typical polyp detection results. In order
to diagnose the role of the online representation learning, we
show the detection results of both the fusion model and the of-
fline network without integrating the online learning scheme.
From the results shown in the first row of Fig. 5, we can see
that both the proposed fusion model and the offline network
can accurately single out polyps with variations in shape, color,

Fig. 5. Examples of polyp detection results. Blue and purple circles
represent detection results of the fusion model and the offline network,
respectively.

TABLE V
RESULTS OF POLYP DETECTION ON ASU–MAYO DATASET USING THE

PROPOSED FUSION MODEL AND THE OFFLINE NETWORK

Method TP FP FN Prec [%] Rec [%] F1 [%] F2 [%]

Offline-3D-Net 3053 835 1260 78.5 70.8 74.5 72.2
Fusion model 3062 414 1251 88.1 71.0 78.6 73.9

and texture from colonoscopy videos. The results highlight that
the proposed 3D-FCN can tackle the large variations of polyps
by exploring discriminative spatio-temporal feature representa-
tions. The second row presents some different detection results
between the fusion model and the offline model. From these
results, we can observe that the fusion model successfully re-
moves some polyp-like FPs detected by the offline network. In
addition, the fusion model integrating online and offline repre-
sentation learning can even detect the polyps that are neglected
by the offline network. These results demonstrate the effec-
tiveness of the online learning strategy aiming at dynamically
learning and exploiting the specific features of the input video
in order to improve the detection performance.

We further quantitatively analyze the detection performance
of the offline network and the fusion model on the challenge
dataset. The results are listed in Table V. It is observed that,
our fusion model reduces around half number of FPs (414 ver-
sus 835) compared to the offline model and hence significantly
improves the precision (88.1% versus 78.5%). The results cor-
roborate that the online representation learning can efficiently
reduce the polyp-like FPs generated by the offline network
through leveraging the specific information extracted from the
input testing video. In addition, the fusion model also detects
more TPs than the offline-3D-Net and improves recall to some
extent. Overall, the fusion model integrating offline and online
representation learning achieves better performance on all four
metrics than the offline network, which evidences the integra-
tion of the online and offline representation learning can greatly
improve the detection performance. But due to the online model
updating and the need of generating two probability maps, the
fusion model has longer processing time than offline model.

E. Comparison With Other Methods

We compare the proposed polyp detection method with sev-
eral other methods participating the challenge. The results are
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TABLE VI
RESULTS OF POLYP DETECTION ON ASU–MAYO DATASET FROM

DIFFERENT METHODS

Method TP FP FN Prec [%] Rec [%] F1 [%] F2 [%]

PLS 1594 10103 2719 13.6 36.9 19.9 27.5
CVC-CLINIC [11] 1578 3456 2735 31.3 36.6 33.8 35.4
OUS 2222 229 2091 90.6 51.5 65.7 56.4
ASU [16], [30] 2636 184 1677 93.5 61.1 73.9 65.7
CUMED 3081 769 1232 80.0 71.4 75.5 73.0
Fusion model (ours) 3062 414 1251 88.1 71.0 78.6 73.9

shown in Table VI.2 The teams CVC-CLINIC [11] and PLS
used hand-crafted features to locate polyps, whereas the teams
CUMED and OUS employed 2D-CNN-based approaches to
automatically learn features from the training videos and then
detected polyps. While the OUS team employed the tradi-
tional sliding windows strategy, the CUMED team adopted a
segmentation-based strategy, where they first used a 2D-CNN
to segment polyps in each frame and then located polyps based
on the segmentation masks. The ASU team utilized a hybrid
approach that integrates hand-crafted features and CNN-based
features [16], [30] . They first generated a set of polyp candi-
dates using hand-crafted geometric features and then applied an
ensemble of 2D-CNNs to classify each candidates.

We have three major observations from the results shown
in Table VI. First, all the CNN-based methods achieve better
performance than the methods based on hand-crafted features,
suggesting that the high-level features learned from CNN are
more discriminative than the hand-crafted features. Second, the
proposed method achieves the best performance on both F1 and
F2 scores among all methods. The results further demonstrate
the effectiveness of the proposed fusion strategy integrating on-
line and offline representation learning in dealing with large
variations of polyps and compensating the discrimination de-
ficiency of offline models caused by limited specificity. Third,
after carefully studying the results, we find that our proposed
method has a better tradeoff between precision and recall than
2D-CNN-based methods. Our method achieves much higher re-
call performance, surpassing ASU and OUS by a large margin
(about 10% and 20%) but our precision is lower than theirs.
The higher precisions may be because the ASU team first used
global geometric features to generate candidates with removing
most of the polyp-like FPs while OUS team set a high probabil-
ity threshold for the final classification. However, as a tradeoff,
these schemes may increase the FN and lead to a lower re-
call. On the other hand, our method outperforms the CUMED
team by a large margin in term of precision (about 8%) while
still achieving competitive recall performance (71.0% versus
71.4%). Note that, in clinical practice, the balance between pre-
cision and recall of an automated detection approach is quite
important. While low precision may increase doctors’ workload
for rechecking, low recall may cause misdiagnosis or delay in
diagnosis that prevents the early or timely treatment. This is

2The challenge result can be found in https://polyp.grand-challenge.org/
results/

TABLE VII
RESULTS OF POLYP DETECTION ON SUBDATASETS SELECTED FROM

ASU–MAYO DATASET

Videos with at least one frame containing polyp

Method TP FP FN Prec [%] Rec [%] F1 [%] F2 [%]

PLS 328 6953 2321 4.5 12.4 6.6 9.2
CVC-CLINIC [11] 195 1343 2454 12.7 7.4 9.3 8.0
OUS 651 55 1998 92.2 24.6 38.8 28.8
ASU [16], [30] 1218 92 1431 92.9 45.9 61.5 51.1
CUMED 1439 600 1210 70.6 54.3 61.4 57.0
Fusion model 1424 385 1225 78.7 53.8 63.9 57.4

Videos with every frame containing polyp

Method TP FP FN Prec [%] Rec [%] F1 [%] F2 [%]

PLS 1266 3150 398 28.7 76.1 41.6 57.2
CVC-CLINIC [11] 1383 272 281 83.6 83.1 83.3 83.2
OUS 1571 167 93 90.4 94.4 92.3 93.6
ASU [16], [30] 1418 40 246 97.2 85.2 90.8 87.4
CUMED 1642 149 22 91.7 98.7 95.0 97.2
Fusion model 1638 0 26 100 98.4 99.2 98.7

why the challenge ranks the participants based on F1 and F2
scores. Overall, the challenge results demonstrate the discrimi-
nation capability of the proposed 3D-FCN and the effectiveness
of the offline and online integration scheme in improving the
detection performance.

We further compare the proposed methods with other methods
on two subsets of the ASU–Mayo dataset: 1) a subset including
videos with at least one frame containing polyp, and 2) a subset
including videos with every frame containing polyp. While the
first subset is composed of the most common cases in clinical
practice, the videos in the second subset can be used to confirm
the diagnosis and assist the subsequent interventions such as
endometrial ablation. The results are shown in Table VII. The
results of subset 1 are quite similar with the results reported
in Table VI, where our method achieves the highest F1 and F2
score among all methods. As for the subset 2, we achieve 0 FP
and 100% precision, outperforming other methods by a large
margin. This is attributed to that our method takes advantage of
both spatial and temporal features extracted by the proposed 3D-
FCN; the temporal features are quite important to detect polyps
in a series of consecutive frames. The high precision on such a
subset demonstrates the potential of the proposed method to be
applied in computer-assisted interventions, where the proposed
method can help detect and track the polyps for more precise
operations. Moreover, our method can detect the polyp at least
in one frame for all videos with polyps and thus has a relatively
low misrate of individual polyp.

IV. DISCUSSION

One of the main challenges for automated detection of polyps
from colonoscopy videos lies in that there are a lot hard mim-
ics in colonoscopy videos, such as bubbles, fecal content, and
specular spots. These hard mimics can seriously hinder the de-
tection performance. A straightforward thought is to use some
preprocessing methods to remove some of these hard mim-
ics. However, these polyp mimics are very irregular and vary
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Fig. 6. Some failure cases of our framework. The red circles represent
the detection results of our method, whereas the blue circles represent
the true polyps.

greatly in different colonoscopy videos; it is hard to use simple
preprocessing methods to eliminate them. We have considered
including them into the negative training samples to improve
the performance of our method. However, this scheme needs us
to manually annotate the positions of these mimics, which is out
of the scope of this challenge because it needs extra labels. We
therefore propose the online and offline representation learning
integrated framework to reduce the influence of hard mimics
through the online sample selection and online training. While
the proposed integrated framework can achieve good results for
discriminating hard mimics, there are still some failure cases,
especially when there are too many very similar mimics (e.g.,
colon walls) in the video, as shown in Fig. 6(a). It is worth
manually annotating these mimics and including them into the
training samples to improve the performance. It is also observed
that the image quality (e.g., image blur or overexposed regions)
would influence the detection performance. Fig. 6(b) and (c)
shows the wrong detections due to the blurry image and overex-
posed regions. In the future, we shall investigate to utilize some
image processing techniques (e.g., image deblurring and image
normalization) to further improve the performance.

In recent years, deep CNNs have been widely applied in
medical image analysis field and achieved remarkable success
in many applications. We find that most of the CNNs in medical
image analysis field employ the architectures in natural image
domain [20], [21] or follow the typical design principles em-
ployed in natural image processing applications (e.g., U-Net
in [25], and Deep Contour-Aware Network (DCAN) in [26]).
We think the reason is that these network architectures or design
principles are summarized from rich design exploration and ex-
periments; they are employed by many applications in the nat-
ural image domain and general enough to be extended to the
medical image domain (i.e., colonoscopy videos). In our paper,
we also adopt some typical design principles (e.g., harnessing
small convolution kernels, doubling the number of feature maps
at downsampling step) in our network design. Our experimental
results demonstrate the effectiveness of these design guidelines.
It indicates that we can borrow the wisdom and successful ex-
perience in natural image domain for medical image analysis
applications. Note that we do not employ the upsampling layers
in our network. Instead, we use (2) to explicitly map the results
back to the original locations in video clips. This is different
from original FCNs for semantic segmentation tasks [37].

Training a deep 3D-FCN from scratch (i.e., the weights
of networks are randomly initialized) is difficult because it
requires a large amount of training samples. However, the

insufficiency of training data is a well-known challenge of har-
nessing deep learning techniques in medical image analysis.
Compared with millions of videos that can be acquired in nat-
ural video analysis tasks (for examples, 0.8 million videos in
YFCC100M dataset [44] and 1.1 million sport videos in Sport-
1M dataset [42] for detection and classification), we only have
20 training videos in this polyp detection challenge. It is dif-
ficult to solve this problem in many applications due to the
high cost of data acquisition and labeling, not to mention that
the small number of subjects for some rare diseases. In order
to mitigate this problem, we used transfer learning (i.e., fine-
tuning CNN models pretrained from natural image dataset to
medical image analysis tasks [20]). Most of studies [18], [20],
[21] have demonstrated that transfer learning from the large
scale annotated natural image datasets to medical image anal-
ysis applications has been consistently beneficial despite the
difference between natural image dataset and medical image
dataset. Therefore, we fine tuned our 3D-FCN from a pretrained
model on Sport-1M. The big performance margin of fine-tuning
model and randomly initialized model has demonstrated the
effectiveness of fine tuning.

In this paper, we use the spatio-temporal features to automat-
ically detect polyp in colonoscopy videos. Although it is not
ready for the in vivo clinical use due to the processing time, our
method can be further accelerated in the future. Specifically, we
can investigate the following aspects for the acceleration:

1) using multiprocess and multiGPU techniques to process
the different frames at the same time;

2) leveraging some recently proposed model compression
techniques, such as FitNet [45] and XNOR-Net [46], to
reduce the computation time of each frame; and

3) adjusting the online model training scheme to update the
online model sample by sample, which can reduce the
time of retraining in online model update.

In addition, there are many other application scenarios for
the proposed method besides the real-time in vivo polyp de-
tection. For example, our method can provide alarm warnings
to the operators in clinical practice. This alarm could remind
doctors of coming back to reidentify the polyps. Our method
can also be applied to offline processing of colonoscopy videos,
which would help automatic document the operation process
and efficiently construct a knowledge database for training new
clinicians.

V. CONCLUSION

In this paper, we propose a novel online and offline 3-D deep
learning integration framework to automatically detect polyps
from colonoscopy videos by leveraging 3D-FCNs. The 3-D
networks can effectively learn spatio-temporal feature repre-
sentations encoding more discrimination capability than fea-
tures learned only from spatial information. More importantly,
the fusion model integrating online and offline representation
learning can significantly reduce the number of FPs and further
improve the discrimination capability. Experiments on ASU–
Mayo Clinic Polyp Database demonstrated the performance of
our method and we achieved the best performance on F1 and
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F2 score metrics. The proposed fusion learning framework pro-
vides a new strategy to fill the gap between the large variation
of testing data and the limited training data, which is a com-
mon challenge when employing supervised learning methods,
especially deep neural networks, in data-driven medical im-
age analysis tasks. Future investigations include evaluating our
method on more clinical data and extending it to more detection
tasks in endoscopic videos.
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